上篇简单讲述了一下本地服务令牌桶限流实现,只能用于本地服务,在分布式环境下,就不太适用了。比如我们想对接口做限流控制,如果使用令牌桶实现,每秒最大的服务数目是10,假如分布式服务有10台实例,考虑到负载均衡配置,那么整个分布式系统的服务能力每秒应该大概在100左右,很明显不太适合。如果想要对分布式服务做精确限流,令牌桶这种方式肯定是不合适的。跟之前分布式服务防重复提交的方法类似,可以借助分布式锁来实现分布式服务限流控制,本篇文章简单介绍一下通过redis实现分布式锁,并实现对分布式服务的限流。
1. 项目结构
| pom.xml
| springboot-18-distributed-current-limit.iml
|
+---src
| +---main
| | +---java
| | | \---com
| | | \---zhuoli
| | | \---service
| | | \---springboot
| | | \---distributed
| | | \---current
| | | \---limit
| | | | DistributedCurrentLimitApplicationContext.java
| | | |
| | | +---annotation
| | | | Limit.java
| | | |
| | | +---aop
| | | | LimitInterceptor.java
| | | |
| | | +---common
| | | | | User.java
| | | | |
| | | | +---enums
| | | | | LimitType.java
| | | | |
| | | | \---redis
| | | | RedisConfig.java
| | | |
| | | +---controller
| | | | UserController.java
| | | |
| | | \---service
| | | | UserControllerService.java
| | | |
| | | \---impl
| | | UserControllerServiceImpl.java
| | |
| | \---resources
| \---test
| \---java
跟上篇文章本非服务限流结构类似,这里不多讲了
2. pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.zhuoli.service</groupId>
<artifactId>springboot-18-distributed-current-limit</artifactId>
<version>1.0-SNAPSHOT</version>
<!-- Spring Boot 启动父依赖 -->
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.3.RELEASE</version>
</parent>
<dependencies>
<!-- Exclude Spring Boot's Default Logging -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>21.0</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
</dependency>
</dependencies>
</project>
3. 自定义注解
@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface Limit {
/**
* 资源的名字
*
* @return String
*/
String name() default "";
/**
* 资源的key
*
* @return String
*/
String key() default "";
/**
* Key的prefix
*
* @return String
*/
String prefix() default "";
/**
* 给定的时间段
* 单位秒
*
* @return int
*/
int period();
/**
* 最多的访问限制次数
*
* @return int
*/
int count();
/**
* 类型
*
* @return LimitType
*/
LimitType limitType() default LimitType.CUSTOMER;
}
4. RedisConfig
@Configuration
public class RedisConfig {
@Bean
public RedisConnectionFactory redisConnectionFactory() {
RedisStandaloneConfiguration redisStandaloneConfiguration = new RedisStandaloneConfiguration("127.0.0.1", 6379);
return new JedisConnectionFactory(redisStandaloneConfiguration);
}
@Bean
public RedisTemplate<String, Serializable> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
RedisTemplate<String, Serializable> template = new RedisTemplate<>();
template.setConnectionFactory(redisConnectionFactory);
template.setKeySerializer(new StringRedisSerializer());
template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
return template;
}
}
5. 切面LimitInterceptor
Redis是线程安全的,我们利用它的特性可以实现分布式锁、分布式限流等组件,之前分布式服务防重复提交的那篇文章就使用官方API setIfAbsent实现了一个分布式锁,来实现分布式服务防重复提交。对于分布式限流而言,分布式限流不能像防重复提交的分布式锁的逻辑,完全依赖于redis expireTime,因为放重复提交在指定时间内只允许一次有效访问,但是分布式服务限流允许多次有效访问。官方未提供相应的API,但是却提供了支持Lua脚本的功能,我们可以通过编写Lua脚本实现自己的API,同时他是满足原子性的。
@Aspect
@Configuration
@Slf4j
@RequiredArgsConstructor
public class LimitInterceptor {
private final RedisTemplate<String, Serializable> limitRedisTemplate;
@Around("execution(public * *(..)) && @annotation(com.zhuoli.service.springboot.distributed.current.limit.annotation.Limit)")
public Object interceptor(ProceedingJoinPoint pjp) {
MethodSignature signature = (MethodSignature) pjp.getSignature();
Method method = signature.getMethod();
Limit limitAnnotation = method.getAnnotation(Limit.class);
LimitType limitType = limitAnnotation.limitType();
String name = limitAnnotation.name();
String key;
int limitPeriod = limitAnnotation.period();
int limitCount = limitAnnotation.count();
switch (limitType) {
case IP:
key = getIpAddress();
break;
case CUSTOMER:
key = limitAnnotation.key();
break;
default:
key = method.getName().toUpperCase();
}
ImmutableList<String> keys = ImmutableList.of(Joiner.on("").join(limitAnnotation.prefix(), key));
try {
String luaScript = buildLuaScript();
RedisScript<Number> redisScript = new DefaultRedisScript<>(luaScript, Number.class);
Number count = limitRedisTemplate.execute(redisScript, keys, limitCount, limitPeriod);
log.info("Access try count is {} for name={} and key = {}", count, name, key);
if (count != null && count.intValue() <= limitCount) {
return pjp.proceed();
} else {
throw new RuntimeException("Request too frequently, please try later");
}
} catch (Throwable e) {
if (e instanceof RuntimeException) {
throw new RuntimeException(e.getLocalizedMessage());
}
throw new RuntimeException("server exception");
}
}
/**
* 限流 脚本
*
* @return lua脚本
*/
public String buildLuaScript() {
StringBuilder lua = new StringBuilder();
lua.append("local c");
lua.append("\nc = redis.call('get',KEYS[1])");
// 调用超过最大值,则直接返回
lua.append("\nif c and tonumber(c) > tonumber(ARGV[1]) then");
lua.append("\nreturn c;");
lua.append("\nend");
// 执行计算器自加
lua.append("\nc = redis.call('incr',KEYS[1])");
lua.append("\nif tonumber(c) == 1 then");
// 从第一次调用开始限流,设置对应键值的过期
lua.append("\nredis.call('expire',KEYS[1],ARGV[2])");
lua.append("\nend");
lua.append("\nreturn c;");
return lua.toString();
}
private static final String UNKNOWN = "unknown";
public String getIpAddress() {
HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
String ip = request.getHeader("x-forwarded-for");
if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
ip = request.getHeader("Proxy-Client-IP");
}
if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
ip = request.getHeader("WL-Proxy-Client-IP");
}
if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
ip = request.getRemoteAddr();
}
return ip;
}
}
特殊讲一下这段lua脚本:
local c
c = redis.call('get',KEYS[1])
if c and tonumber(c) > tonumber(ARGV[1]) then
return c;
end
c = redis.call('incr',KEYS[1])
if tonumber(c) == 1 then
redis.call('expire',KEYS[1],ARGV[2])
end
return c;
逻辑很简单,先获取key已执行服务次数,如果已大于允许最大值直接返回。否则redis key对应的value加1,并且如果是第一次设置key,对key设置超时时间。
6. 注解使用
@RestController
@RequestMapping("/user")
@AllArgsConstructor
public class UserController {
private UserControllerService userControllerService;
@Limit(key = "test", period = 100, count = 10)
@RequestMapping(value = "/get_user", method = RequestMethod.POST)
public ResponseEntity getUserById(@RequestParam Long id){
return ResponseEntity.status(HttpStatus.OK).body(userControllerService.getUserById(id));
}
}
设置100S内只允许访问10次
7. 测试
100秒内,访问超过10次
可以看到,十次之后,服务就报错了,限流成功。
下面使用上篇文章我自己写的测试工具,一次性发50个请求到后台,执行结束后,日志如下:
可以看到,只有10次请求通过,其他的都失败了,符合预期
示例代码:码云 – 卓立 – 分布式服务限流
参考链接: